in thickness shall be milled for all bearing surfaces (except as noted in subparagraphs 2 and 3 of this section).

2) Bottom surfaces of bearing plates and column bases which are grouted to ensure full bearing contact on foundations need not be milled.

3) Top surfaces of bearing plates need not be milled when full-penetration welds are provided between the column and the bearing plate.

M3. SHOP PAINTING

1. General Requirements

Shop painting and surface preparation shall be in accordance with the provisions of the AISC Code of Standard Practice.

Shop paint is not required unless specified by the contract documents.

2. Inaccessible Surfaces

Except for contact surfaces, surfaces inaccessible after shop assembly shall be cleaned and painted prior to assembly, if required by the design documents.

3. Contact Surfaces

Paint is permitted unconditionally in bearing-type connections. For slip-critical connections, the faying surface requirements shall be in accordance with the RCSC Specification for Structural Joints Using ASTM A325 or A490 Bolts, paragraph 3(b).

4. Finished Surfaces

Machine-finished surfaces shall be protected against corrosion by a rust-inhibitive coating that can be removed prior to erection, or which has characteristics that make removal prior to erection unnecessary.

5. Surfaces Adjacent to Field Welds

Unless otherwise specified in the design documents, surfaces within two inches of any field weld location shall be free of materials that would prevent proper welding or produce objectionable fumes during welding.

M4. ERECTION

1. Alignment of Column Bases

Column bases shall be set level and to correct elevation with full bearing on concrete or masonry.

2. Bracing

The frame of steel skeleton buildings shall be carried up true and plumb within the limits defined in the AISC Code of Standard Practice. Temporary bracing shall be provided, in accordance with the requirements of the Code of Standard Practice, wherever necessary to support all loads to which the structure may be subjected, including equipment and the operation of same. Such bracing shall be left in place as long as required for safety.

M5. QUALITY CONTROL

3. Alignment

No permanent bolting or welding shall be performed until the adjacent affected portions of the structure have been properly aligned.

4. Fit of Column Compression Joints and Base Plates

Lack of contact bearing not exceeding a gap of $\frac{1}{8}$-in., regardless of the type of splice used (partial-penetration groove welded, or bolted), is permitted. If the gap exceeds $\frac{1}{16}$-in., but is less than $\frac{1}{8}$-in., and if an engineering investigation shows that sufficient contact area does not exist, the gap shall be packed out with non-tapered steel shims. Shims need not be other than mild steel, regardless of the grade of the main material.

5. Field Welding

Shop paint on surfaces adjacent to joints to be field welded shall be wire brushed if necessary to assure weld quality.

Field welding of attachments to installed embedments in contact with concrete shall be done in such a manner as to avoid excessive thermal expansion of the embedment which could result in spalling or cracking of the concrete or excessive stress in the embedment anchors.

6. Field Painting

Responsibility for touch-up painting, cleaning, and field painting shall be allocated in accordance with accepted local practices, and this allocation shall be set forth explicitly in the design documents.

7. Field Connections

As erection progresses, the structure shall be securely bolted or welded to support all dead, wind, and erection loads.

The fabricator shall provide quality control procedures to the extent that the fabricator deems necessary to assure that all work is performed in accordance with this Specification. In addition to the fabricator's quality control procedures, material and workmanship at all times may be subject to inspection by qualified inspectors representing the purchaser. If such inspection by representatives of the purchaser will be required, it shall be so stated in the design documents.

1. Cooperation

As far as possible, all inspection by representatives of the purchaser shall be made at the fabricator's plant. The fabricator shall cooperate with the inspector, permitting access for inspection to all places where work is being done. The purchaser's inspector shall schedule this work for minimum interruption to the work of the fabricator.

2. Rejections

Material or workmanship not in reasonable conformance with the provisions of this Specification may be rejected at any time during the progress of the work.
The fabricator shall receive copies of all reports furnished to the purchaser by the inspection agency.

3. Inspection of Welding
The inspection of welding shall be performed in accordance with the provisions of AWS D1.1 except as modified in Section J2.

When visual inspection is required to be performed by AWS certified welding inspectors, it shall be so specified in the design documents.

When nondestructive testing is required, the process, extent, and standards of acceptance shall be clearly defined in the design documents.

4. Inspection of Slip-Critical High-Strength Bolted Connections
The inspection of slip-critical high-strength bolted connections shall be in accordance with the provisions of the RSCE Load and Resistance Factor Design Specification for Structural Joints Using ASTM A325 or A490 Bolts.

5. Identification of Steel
The fabricator shall be able to demonstrate by a written procedure and by actual practice a method of material application and identification, visible at least through the “fit-up” operation, of the main structural elements of a shipping piece.

The identification method shall be capable of verifying proper material application as it relates to:

1. Material specification designation
2. Heat number, if required
3. Material test reports for special requirements.

APPENDIX B
DESIGN REQUIREMENTS

Appendix B5.1 provides an expanded definition of limiting width-thickness ratio for webs in combined flexure and axial compression. Appendix B5.3 applies to the design of members containing slender compression elements.

B5. LOCAL BUCKLING

1. Classification of Steel Sections
For members with unequal flanges and with webs in combined flexural and axial compression, \(\lambda_c \) for the limit state of web local buckling is

\[
\lambda_c = \frac{253}{\sqrt{F_y}} \left[1 + 2.83 \left(\frac{h}{h_c} \right) \left(1 - \frac{P}{\phi P_y} \right) \right]
\]

\[
\frac{3}{4} \leq \frac{h}{h_c} \leq \frac{3}{2}
\]

For members with unequal flanges with webs subjected to flexure only, \(\lambda_c \) for the limit state of web local buckling is

\[
\lambda_c = \frac{253}{\sqrt{F_y}} \left[1 + 2.83 \left(\frac{h}{h_c} \right) \right]
\]

\[
\frac{3}{4} \leq \frac{h}{h_c} \leq \frac{3}{2}
\]

where \(\lambda_c, h, h_c \) are as defined in Section B5.1.

These substitutions shall be made in Appendices F and G when applied to members with unequal flanges. If the compression flange is larger than the tension flange, \(\lambda \) shall be determined using Equation A-B5-1, A-B5-2, or Table B5.1.

3. Slender-Element Compression Sections
Axially loaded members containing elements subject to compression which have a width-thickness ratio in excess of the applicable \(\lambda \) as stipulated in Section B5.1 shall be proportioned according to this Appendix. Flexural members with slender compression elements shall be designed in accordance with Appendices F and G. Flexural members with proportions not covered by Appendix F1 shall be designed in accordance with this Appendix.
SECTION 8. QUALITY CONTROL

8.1. General

8.1.1. The fabricator maintains a quality control program to the extent deemed necessary so that the work is performed in accordance with this Code, the AISC Specification, and contract documents. The fabricator has the option to use the AISC Quality Certification Program in establishing and administering the quality control program.

8.1.2. The erector maintains a quality control program to the extent the erector deems necessary so that all of the work is performed in accordance with this Code, the AISC Specification and the contract documents. The erector shall be capable of performing the erection of the structural steel, and shall provide the equipment, personnel and management for the scope, magnitude and required quality of each project.

8.1.3. When the owner requires more extensive quality control or independent inspection by qualified personnel, or requires the fabricator to be certified by the AISC Quality Certification Program, this shall be clearly stated in the contract documents, including a definition of the scope of such inspection.

8.2. Mill Material Inspection

The fabricator customarily makes a visual inspection, but does not perform any material tests, depending upon mill reports to signify that the mill product satisfies material order requirements. The owner relies on mill tests required by contract and on such additional tests as he orders the fabricator to have made at the owner’s expense. If mill inspection operations are to be monitored, or if tests other than mill tests are desired, the owner so specifies in the contract documents and should arrange for such testing through the fabricator to assure coordination.

8.3. Non-Destructive Testing

When non-destructive testing is required, the process, extent, technique and standards of acceptance are clearly defined in the contract documents.

8.4. Surface Preparation and Shop Painting Inspection

Surface preparation and shop painting inspection must be planned for acceptance of each operation as completed by the fabricator. Inspection of the paint system, including material and thickness, is made promptly upon completion of the paint application. When wet film thickness is inspected, it must be measured during the application.

8.5. Independent Inspection

When contract documents specify inspection by other than the fabricator’s and erector’s own personnel, both parties to the contract incur obligations relative to the performance of the inspection.

8.5.1. The fabricator and erector provide the inspector with access to all places where work is being done. A minimum of 24 hours notification is given prior to commencement of work.

8.5.2. Inspection of shop work by the owner or his representative is performed in the fabricator’s shop to the fullest extent possible. Such inspections should be in sequence, timely, and performed in such a manner as will not disrupt fabrication operations and will permit repair of non-conforming work prior to any required painting while the material is still in process in the fabrication shop.

8.5.3. Inspection of field work must be completed promptly so that corrections can be made without delaying the progress of the work.

8.5.4. Rejection of material or workmanship not in conformance with the contract documents may be made at any time during the progress of the work. However, this provision does not relieve the owner of its obligation for timely, in-sequence inspections.

8.5.5. Copies of all reports prepared by the owner’s inspection representative must be given to the fabricator and erector immediately after the inspection to allow any necessary corrective work to be performed in a timely manner.

8.5.6. The owner’s inspection representative may not suggest, direct, or approve the fabricator or erector to deviate from the contract documents or approved shop drawings, or approve such deviation, without the express written approval of the engineer of record or the person designated as the owner’s authorized representative.
AISC Quality Certification Program

In recent years, the quality of construction methods and materials has become the subject of increasing concern to building officials, highway officials, and designers. One result of this concern has been the enactment of ever more demanding inspection requirements intended to ensure product quality. In many cases, however, these more demanding inspection requirements have not been based upon demonstrated unsatisfactory performance of structures in service. Rather, they have been based upon the capacity of sophisticated test equipment, or upon standards developed for nuclear construction rather than conventional construction. Adding to the problem, arbitrary interpretation of specifications by inspectors has too often been made without rational consideration of the type of construction involved. The result has been spiraling increases in the costs of fabrication of structural steel and of inspection, which must be paid by owners without necessarily assuring that the product quality required has been improved.

Product inspection, although it has a valid place in the construction process, is not the most logical or practical way to assure that structural steelwork will conform to the requirements of contract documents and satisfy the intended use. A better solution can be found in the exercise of good quality control and quality assurance by the fabricator throughout the entire production process.

Recognizing this fact, and seeking some valid, objective method whereby a fabricator's capability for assuring a quality product could be evaluated, a number of code authorities have, in recent years, instituted steps to establish fabricator registration programs. However, these independent efforts resulted in extremely inconsistent criteria. They were developed primarily by inspectors or inspection agencies who were experienced in testing, but were not familiar with the complexities of the many steps, procedures, techniques, and controls required to assure quality throughout the fabricating process. Neither were these inspection agencies qualified to determine the various levels of quality required to assure satisfactory performance in meeting the service requirements of the many different types of steel structures.

Recognizing the need for a comprehensive national standard for fabricator certification, and concerned by the trend toward costly inspection requirements that could not be justified by rational quality standards, the American Institute of Steel Construction has developed and implemented a voluntary Quality Certification Program, whereby any structural steel fabricating plant—whether a member of AISC or not—can have its capability for assuring quality production evaluated on a fair and impartial basis.
THE AISC PROGRAM

The AISC Quality Certification Program does not involve inspection and/or judgment of product quality on individual projects. Neither does it guarantee the quality of specific fabricated steel products. Rather, the purpose of the AISC Quality Certification Program is to confirm to the construction industry that a Certified structural steel fabricating plant has the personnel, organization, experience, procedures, knowledge, equipment, capability and commitment to produce fabricated steel of the required quality for a given category of structural steelwork.

The AISC Quality Certification Program was developed by a group of highly qualified shop operation personnel from large, medium, and small structural steel fabricating plants throughout the United States. These individuals all had extensive experience and were fully aware of where and how problems can arise during the production process and of the steps and procedures that must be followed during fabrication to assure that the finished product meets the quality requirements of the contract.

The program was reviewed and strongly endorsed by an Independent Board of Review comprised of 17 prominent structural engineers from throughout the United States, who were not associated with the steel fabricating industry, but were well qualified in matters of quality requirements for reliable service of all types of steel structures.

CATEGORIES OF CERTIFICATION

A fabricator may apply for certification of a plant in one of the following categories of structural steelwork:

I. Conventional Steel Structures — Small Public Service and Institutional Buildings, (Schools, etc.), Shopping Centers, Light Manufacturing Plants, Miscellaneous and Ornamental Iron Work, Warehouses, Sign Structures, Low Rise, Truss Beam/Column Structures, Simple Rolled Beam Bridges.

II. Complex Steel Building Structures — Large Public Service and Institutional Buildings, Heavy Manufacturing Plants, Powerhouses (fossil, non-nuclear), Metal Producing/Rolling Facilities, Crane Bridge Girder, Bunkers and Bins, Stadium, Auditoriums, High Rise Buildings, Chemical Processing Plants, Petroleum Processing Plants.

III. Major Steel Bridges — All bridge structures other than simple rolled beam bridges.

MB: Metal Building Systems — Pre-engineered Metal Building Structures.

Supplement: Auxiliary and Support Structures for Nuclear Power Plants — This supplement, applicable to nuclear plant structures designed under the AISC Specification, but not to pressure-retaining structures, offers utility companies and designers of nuclear power plants a certification program that will eliminate the need for many of the more costly, conflicting programs now in use. A fabricator must hold certification in either Category I, II or III prior to application for certification in this category.

Certification in Category II automatically includes Category I. Certification in Category III automatically includes Categories I and II. Certification in Category MB requires Category III and Category II. Subsequent inspections will be made by the Inspection-Evaluation team during the second and third year inspections.

INSPECTION-EVALUATION PROCEDURE

An outside, experienced, professional organization, ABS Quality Evaluations, Inc. (a subsidiary of American Bureau of Shipping) has been retained by AISC to perform the plant Inspection-Evaluation in accordance with a standard check list and rating procedure established by AISC for each certification category in the program. Upon completion of this Inspection-Evaluation, ABS Quality Evaluations, Inc. (commonly known as ABS-QE) will recommend to AISC that a fabricator be approved or disapproved for certification. ABS-QE's Inspection-Evaluation is totally independent of the fabricator's and AISC's influence, and their evaluation is not subject to review by AISC.

At a time mutually agreed upon by the fabricator, AISC, and ABS-QE, the Inspection-Evaluation team visits the plant to investigate and rate the following basic plant functions directly and indirectly affecting quality assurance: General Management, Engineering and Drafting, Procurement, Shop Operations, and Quality Control. The Inspection-Evaluation team will perform the following:

1. Confirm data submitted with the Application for Certification.
2. Interview key supervisory personnel and subordinate employees.
3. Observe and rate the organization in operation, including procedures used in functions affecting quality assurance.
4. Inspect and rate equipment and facilities.
5. At an “exit interview,” review with plant management the completed check list observations and evaluation scoring, including discussions of deficiencies and omissions, if any.

The number of days required for Inspection-Evaluation varies according to the size and complexity of the plant, but usually requires two to five days.

CERTIFICATION

Following recommendation for Certification by the Inspection-Evaluation team, AISC will issue a certificate identifying the fabricator, the plant, and the Category of Certification. The certificate is valid for a three year period, subject to annual review in the form of unannounced inspections early in the second and third year periods. The certificate is endorsed annually, provided there is successful completion of the unannounced second and third year inspection.

An annual self-audit, based on the standard check list, must be made by plant management during the 11th and 23rd months after initial Certification. This self-audit must be retained at the plant and made available to the Inspection-Evaluation team during the unannounced second and third year inspections.

At the end of the third year, the cycle begins again with a complete prescheduled Inspection-Evaluation and the issuance of a new certificate.